1 3rd Year Design and Production

Fatigue – Lecture 6

2 Cumulative Fatigue Damage

We have studied varying loads. However, we have assumed that σ_m and σ_a have not varied over time. Often this is not the case.

2.1 Palmgren/Miner Rule

. .

- If $n_1, n_2, n_3, n_4, \ldots, n_k$, are the number of cycles accumulated at specific stress levels
- And $N_1, N_2, N_3, N_4, \ldots, N_k$, are the lifetimes predicted at these stress levels
- Then failure will occur when

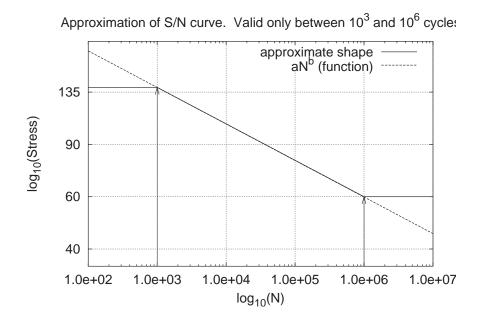
$$\sum_{j=1}^{j=k} \frac{n_j}{N_j} = \frac{n_1}{N_1} + \frac{n_2}{N_2} + \frac{n_3}{N_3} + \frac{n_4}{N_4} + \dots + \frac{n_k}{N_k} = 1$$

3 Cumulative Fatigue Damage

3.1 Estimating life at a stress

How do we know what the life of the component is at a particular stress? i.e. how do we get N_i for σ_i ?

Recall, our S - N curves related stress to lifetime (in cycles).



4 Cumulative Fatigue Damage

4.1 Estimating Life at a Stress – SN Curve

We need two points on the log-log curve to (approximately) draw it.

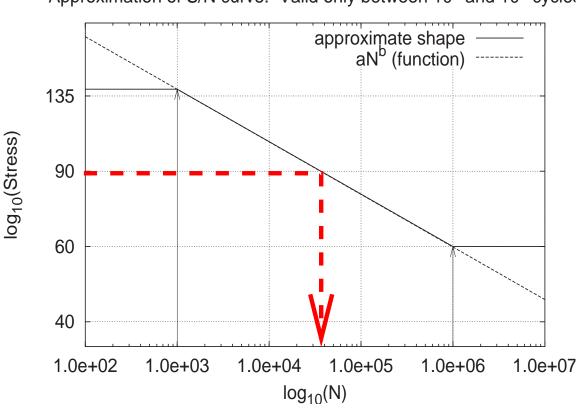
- 10³ cycle limit
- Endurance limit $\equiv 10^6$ cycle limit $\equiv S_n$

There are approximate expressions for estimating these in the handouts. (Experimental data would be better, of course.) For example

- $S_3 = 0.9S_u$, for bending
- $S_n = C_L C_S C_D S'_n = C_L C_S C_D (0.5 S_u)$

With these two points, we can draw on log-log paper the SN curve, and then we can read off any intermediate lifetime (given a stress level)

5 Cumulative Fatigue Damage



Approximation of S/N curve. Valid only between 10³ and 10⁶ cycles

6 Cumulative Fatigue Damage

6.1 Estimating life at a stress – Calculation

We can also calculate the intermediate points Recall basic maths: the equation for a straight line:

$$y = mx + c$$

Since we have a straight line on our log-log plot, we can say

 $\log_{10}(S_f) = b \log_{10}(N) + \log_{10}(a)$ or equivalently $S_f = aN^b$

There are two unknowns, a and b. We can find these using our two known points at 10^3 and 10^6 cycles.

7 Cumulative Fatigue Damage

7.1 Estimating life at a stress – Calculation

Say a material has a 10^3 cycles strength of 140ksi, and an endurance limit of 60ksi, then we can say

$$\log_{10}(140) = b \log_{10}(10^3) + \log_{10}(a) = 3b + \log_{10}(a)$$
$$\log_{10}(60) = b \log_{10}(10^6) + \log_{10}(a) = 6b + \log_{10}(a)$$

This gives two simple equations...

$$2.146 = 3b + \log_{10}(a)$$
$$1.778 = 6b + \log_{10}(a)$$

We can then solve to get b and $log_{10}(a)$.

Later, for any given S_f , we find N using...

 $N = 10^{(\log_{10}(S_f) - \log_{10} a)/b}$

8 Mean and Alternating Loads

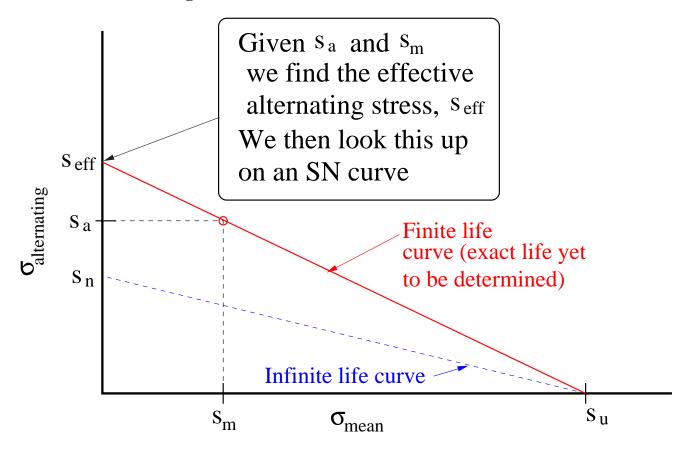
What we have done so far is sufficient for fully reversed loading... what about loads that have a mean component?

8.1 Constant Life Fatigue Diagram

We use the same tool we used when looking at infinite life, the CLF-diagram

- Goodman line
- Every point on Goodman (or Soderberg if that is preferred) line has the same lifetime
- Find the fully reversed stress with the same life as our mean plus alternating
- Find the lifetime for that equivalent alternating stress using the SN curve.

9 Mean and Alternating Loads



10 Sample Problem

A critical notch is subject to varying nonsteady loading. A typical 6 second period includes the following loading condition

- 2 cycles at $\sigma_a = 100 \text{MP}a$ and $\sigma_m = 50 \text{MP}a$
- 4 cycles at $\sigma_a = 125 \text{MP}a$ and $\sigma_m = 75 \text{MP}a$
- 2 cycles at $\sigma_a = 225 \text{MP}a$ and $\sigma_m = 125 \text{MP}a$
- 1 cycle at $\sigma_a = 350 \text{MP}a$ and $\sigma_m = 50 \text{MP}a$

The part is made from aluminium, and has the following properties: $S_u = 480$ MPa, $S_y = 410$ MPa. Correcting for geometry, surface, etc., the fatigue properties of the notch are: $S_{10^3} = 450$ MPa, $S_{10^6} = 180$ MPa. Calculate the expected life of the component.

