1 3rd Year Engineering Materials

Polymers – Lecture 3

2 Relative Molecular Mass: RMM

2.1 Definitions

- The RMM of a molecule is the ratio of the mass of the molecule to 1/12 of the mass of a Carbon-12 atom
- RMM of a Carbon atom is 12
- RMM of a Hydrogen atom is 1

2.2 Polymers

- RMM of a polymer is related to the degree of polymerization
- For Polyethylene (PE), with $n = 10^4$:
 - RMM = $10^4(2 \times 12 + 4 \times 1) = 280000$
- How heavy is a piece of string?
 - Weight-per-unit-length×Actual-length

3 Relative Molecular Mass: RMM

3.1 Significance of RMM

- RMM is a measure of mechanical strength
- As a general rule...longer molecules (higher RMM) have higher strength

3.2 Distribution of RMM

- The polymerization process results in chains of varying length
- This means molecules with different RMM are present
- Characterising the Distribution of RMM is a statistical exercise
 - What is the mean?
 - What shape does the distribution have?
 - What size of spread is present (Standard Deviation)?

4 Relative Molecular Mass: RMM

4.1 Distribution of RMM

5 Average RMM

5.1 Definitions

- W is total mass of a specimen
- w_i is the share of the mass made up by a fraction i
- n_i is number of moles of fraction *i* present
- M_i is the molar mass of the molecules in fraction i

– $M_i = \text{RMM}_i \times \text{mass of a mole of carbon}/12$

- Therefore $w_i = n_i M_i$
 - i.e. Number-of-moles times Mass-per-mole

6 Average RMM

6.1 Number Average

• i.e. Total mass divided by the number of molecules

$$\bar{M}_n = \frac{\sum n_i M_i}{\sum n_i} = \frac{\sum w_i}{\sum n_i} = \frac{W}{\sum n_i}$$

6.2 Weight Average

• i.e. Total mass divided by the number of molecules

$$\bar{M}_w = \frac{\sum w_i M_i}{\sum w_i} = \frac{\sum w_i M_i}{W} = \frac{\sum n_i M_i^2}{\sum n_i M_i}$$

6.3 Range

• The ratio

 \bar{M}_w/\bar{M}_n

gives a measure of the range of molecular sizes in the specimen

7 Relative Molecular Mass: RMM

7.1 Significance of RMM

- Higher RMM gives better tensile strength
 - Longer molecules become more entangled than shorter molecules
 - Greater level of entanglement means more energy required to cause sliding
 - Tensile strength higher
- Higher RMM gives higher melting point
 - Again, due to level entanglement
 - Longer molecules require more energy (heat) before they can slide relative to one another

8 Relative Molecular Mass: RMM

8.1 Significance of RMM

- Spread in the RMM of the polymer produces a spread in the melting point
 - Shorter molecules disentangle at low temperature
 - Material begins to soften
 - Softening continues progressively as temperature increases and longer and longer molecules disentangle
- Sharp melting point useful for injection moulding
 - Rapid freeze is desirable
- Broad melting temperature is useful for extrusion
 - Improves melt strength
 - Polymer can hold a form even when largely melted due to remaining longer molecules still being entangled

9 Relative Molecular Mass: RMM

9.1 UHMWPE

- Extremely long polymer chains
 - \Rightarrow Good strength & impact toughness, high melting point
- Typically, RMM-Distribution is very narrow
 - \Rightarrow Not so good for extrusion
- Blending with lower RMM PE gives bimodal RMM-distribution
- The low RMM material acts as a low-melting point lubricant

10.1 Crystalline

Molecular chains packed to produce an ordered atomic array

10.2 Amorphous

Non-crystalline: irregular molecular structure prevents crystallinity. For example...

- Random side branches (e.g. PE)
- Asymmetry (e.g. Vinyl)

			Γ		
	н	X	н	Х	
n	с	_ C	 — c —	- c	-
	н	н	Н	н	n

10.3 Semi-Crystalline Plastics

Most materials have both crystalline and amorphous regions in their structure

11 Structure of Polymeric Solids

11.1 Crystallization and Melting

Two Stages

- 1. Molecule assumes its lowest-energy conformation
 - Planar zig-zag for PE
 - Helix for molecules with bulkier side-groups
 - PTFE
 - Vinyls
 - This change can result in volume change and geometric distortion of a component (e.g. PTFE at 10°C, polybutane at room temperature).
- 2. Molecules pack together like parallel rods

12 Structure of Polymeric Solids

12.1 Crystallization and Melting

13 Structure of Polymeric Solids

- Initial crystallization forms Spherulites (shown in preceding figure).
- Spherulite is composed of crystals
- Crystals are very thin twisted lamellae/layers
 - In PE, crystal lamellae are about 10nm thick
 - Lamellae are separated by thin (approx 10nm) lamellae of amorphous material
- Crystal size affects subsequent melting temperatures
- High degree of crystallinity increases strength/stiffness of a polymeric material
- Highly crystalline materials have lower impact toughness

14 Structure of Polymeric Solids

14.1 Spherulite and Crystal Structure

15 Structure of Polymeric Solids

15.1 Crystallinity and Material Properties

- Polymer crystals are highly anisotropic
 - \Leftrightarrow Material properties depend on direction/orientation
- Along molecule we have covalent chemical bonds
 - Carbon-to-Carbon
- In transverse direction we have far weaker secondary forces:
 - van der Waals
 - Dipole
 - Hydrogen bonds
- In direction of molecule modulus is 100GPa to 400GPa
- In transverse direction, modulus is 100 times lower
- In polymeric fibres, molecules are engineered to align along fibre direction

16 Structure of Polymeric Solids

16.1 Thermal Transitions – Thermoplastics

- If highly crystalline, material will have a crystalline melt temp. T_m
 - At this (fairly constant) temperature, inter-molecule crystal bonds break down and material becomes liquid
- If a morphous: Glass Transition Temperature ${\cal T}_g$
 - At low temperatures, molecules are immobile in a disorganised tangle
 - As temperature increases, around T_g molecules begin to become more mobile
 - After transition, molecules are still tangled, but can move somewhat freely (stiffness decreases profoundly: 1/1000)
- Most materials have crystalline and amorphous regions $T_g/T_m \approx 0.6$
 - Excellent **toughness** in this region

