1 4th Year Materials Engineering

Mechanics of Composite Materials — Lecture 3

2 Last Week

2.1 Summary

Transformations and symmetry, mirror and rotation

1 0 0 cosf) —sind 0
6=10 1 0 B = |sinf cosf 0
0 0 -1 0 0 1
Stress and Strain
011 012 013 €11 €12 €13
Oij = |012 022 023 €j = |€12 €22 €23
013 023 033 €13 €23 €33

Briefly introduced the stiffness tensor

cijkl, 4, J, k, [ take valuesin 1,2,3> 81 entries

3 Stiffness Tensor

cijin Stiffness TensoB x 3 x 3 x 3

Explanation
e 9 Strain components;

» 9 Stess components;
» Every strain contributes to every stress General)
* = 9 x 9 = 81 components of stiffness

Oij = Cijkl€kl

Tensor Summation Convention... sum over repeated indices

Oij = Cij11€11 + Cij12€12 + C;j13€13 + Cij21€21 + C;22€22
J J J J J J

+ Cije3€23 1+ Cij31€31 + Cij32€32 + Cij33€33
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4 Diagram

€11 ——» XC1111

€22 ———» X (11922

€33 ——» X (1133

€12 ———» XC1112

€21 ——» X(C1121

€13 ——» X(C1113

€31 ——» XC1131

€23 ———» X C1123

€32 ———» X (1139

And so on for the 8 other stresses.

5 Simplifications
Recall stress and strain tensors are symmetric.
Tij = 0ji €ij = €ji
As a consequence
Cijkl = Cjikl = Cijlk = Cjilk
Energy considerations lead to the following additional condition
Cijkl = Cklij

= at most 21 independent stiffness constants

As an aside, note that we can also asenpliance which is the inverse of stiffness

Oij = Cijkl€kl

€ij = SijklOkl
The first symmetry condition (to do with stress and strain) means taht there are only 6 stresses and 6 strains (nc

9 of each), so we need onfiyx 6 = 36 stiffness constants. The second condition, to do with energy, eliminates a
further 15 constants. This is equivalent to enforcing a symmetry condition on the followingmatrix

C1111  C1122  C1133 C1123 C1113 61112_
C2211 (2222 (2233 (C2223 (2213 (2212
C3311 (3322 (3333 (3323 (3313 (3312
C2311 (2322 (2333 C2323 (2313 (2312
C1311 C1322 C1333 C1323 C1313 C1312
| C1211  C1222 C1233 C1223 C1213 C1212]
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Which then becomes:

_01111 C1122 €C1133 C1123 C1113 01112-
C1122 (2222 (2233 (2223 (2213 (2212
C1133 (2233 (3333 (3323 (3313 (3312
C1123 (2223 (3323 (€2323 (2313 (2312
C1113 2213 (3313 C2313 (1313 C1312

[C1112  C2212 C€3312 C2312 C1312 C1212]

and has only 21 independent entries (the diagonal 6 and the 15 entries above it).
6 Simplifications

How does this affecto;; = c;jii€x: [? From before:

0ij =Cij11€11 + Cij12€12 + Cij13€13 + Cij21€21 + Cij22€22

Apply symmetry toc;j;,; and toey,; terms:
0ij = Cij11€11 + Cij22€22 + Cij33€33 + 2¢;j03€23 + 2¢4513€13 + 2¢512€12
Now we introduce a new termy is called theengineering shear strainand is simply defined as
vij = 2¢€;5, wherei # j. D

Using this. ..

Oij = Cij11€11 + Cjj22€22 + Cij33€33 + Cij237Y23 + Cij13713 + Cij12712

7 Simplifications — Matrix Relation

IntroduceReduced Matrix Notation:

o11 [C11 Ci2 Ci3 Ciu Cis5 Cis]| (en
092 Ci2 O Coz (o (o5 Cop| | €22
o33 |Ciz Cog C33 (O34 C35 Cs6| ) €33
T3 [ |Cia Co Csy Cuy Cus Cug| ) 723
731 Ci5 Cos Cs5 Cy5 Cs5 Cse| |31
T12 [C16 Cos C36 Cus Cse Coes] 712

Notation has changed a little for the stiffness, now our indexes go up to 6, though there are only two of them. The

conversion is shown in the table.

Here, stress and strain look like vectors of length 6, and stiffness is just a square matrix. This has the advantag
of being compact and easy to write. The disadvantage is that coordinate transformations are harder to do, and it is n
as easy to program a computer to deal with this form. Note that the subscripts on the stress and strain have not be«

changed. They are just the same as before. Only stiffness has been altered in this way.

The reson for this notation is that it allows us to fully describe even a very general material using a notation that

can be easily written in a single equation. Also, the contracted subscripts facilitate writing.

Note that the material properties shown, comprising 21 independent numbers, are sufficient to describe the lines
elastic behaviour of even the most generally anisotropic material. Of course, there is much more that one could sa
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Tensor subscript Matrix subscript
11 = 1
22 = 2
33 = 3
23 = 4
13 = 5
12 = 6

about a material’'s other properties that we have not mentioned at all: density, viscoelastic behaviour, temperatur
response, etc.,

8 Simplifications — Material Symmetry

Up to now we have not required the material to have any symmetry. Although the stress, strain, and stiffness ten
sors have symmetry, this is not due to material symmetry, it is a consequence of equilibrium and energy consideration
and has nothing to do with the material properties in question.

8.1 Stiffness Transformation

The stiffness tensor transforms like other tensors.

C;jkl = ﬁimﬁjnﬁkoﬁlpcmnop

3 3 3 3
= Z Z Z Z BimBjnBroBipCmnop

m=1n=1 o=1 p=1
Remember, tensor summation convention. Sum over repeated indices. This is written explicitly on the second line o
the equation. In the most general situation, all 81 entriesaiil contribute to each entry in’. However, if you look
at the transformation matrices we mentioned already, you'll notice several entries are usually zero. This simplifies the
calculation somewhat as if even one of théerms is zero, then the entire product goes to zero.
Expanding for one entry i
0/1213 =F11621811 8311111
+ 811821811 832¢1112
+ B11821811833¢1113
+ 511021512031 ¢1121
+ 511621 512032¢1122
+ 511021 512033¢1123
4+ ...75 more terms

The terms of3 depend on what transformation we are using. It might be a mirror reflection, or a rotation, or something
else. If the material properties are symmetric under the transformation, then they are the same when transformed :
they were before

9 Simplifications — Material Symmetry

Symmetry undeff means:

o
Cijkl = Cijkl
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= set of equations. When we solve the equations, we will see that some of the stiffness constants will have to be zer
to satisfy this requirement. Additionally, we may see that some stiffness constants need to be the same as others
are the same as some combination of other properties.

We have seen the transformation tensor for this already, many times. For clarity, it is repeated here:

0
0
-1

o = O

1
=10
0

Take each unique term from thé & 6) stiffness matrix. Write it down using full (4) tensor subscripts. Then write
down the sum of terms that contribute to this term under the transformation. Pay attention to the position of the zeros
in 8 as this makes things much easier. Formulate a set of equations, then solve. The procedure is much the same
the one we applied to a single vector in the previous lecture

9.1 Example terms,r;—x, Plane Mirror Symmetry

Cijkl = C;jkl = ﬂim/@jnﬁkoﬁlpcmnop

Ci1 = ci11 = i = BPuPufufiiciin +0. ..
= 1)(1)(1)(Verrnn = e --.no effect

Note that we end up with just a single term in our summation. This is because the transformation rdégrnsl.

The other 80 terms in the summation all go to zero (which is very convenient).
10 Simplifications — Material Symmetry

Cijkl = C;jkl = Bimﬁjnﬁkoﬁlpcmnop

Cua = 2323 = Chgog = [22333022033¢2233 + 0. ...
= (+1)(—1)(+1)(—1)62233 = (9233 .. .again, no effect

But some constantsre affected. ..

Csq = c3303 = gz = P33333022033¢3323 + 0. ...
= (=D (=D (+1)(=1)ecr111 = —cs323
= (34 =c3323 =0

Note odd number of “3"s in subscript. We apply this repeatedely for the rest of the material’s stiffness constants, anc
we find that quite a few terms will go to zero (all the terms with an odd number of "3”s in their subscriptss..

c1123, 1312, C1333, €tC., To make an orthotropic material, we apply a second plane of symmetry and combine the effect
of the two. Theoretically we need to apply a third perpendicular plane of symmetry, but because the stiffness tenso
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has an even order (4), this third plane actually imposes no extra restrictions on our stiffness tensor.

11 Single Symmetry Plane — Stiffness Matrix

11.1 x;—x, Plane of Symmetry

o11 [C11 Ci2 Ci3 O 0 Cie| [enn
022 Cia Co Caz 0 0 Co| |€22
033 Ciz Caz C33 0 0  C36| |e€33
0923 0 0 0 Cu Csi5 O Y23
013 0 0 0 Ci Cs5 0 Y13
012 1Ci6 Cos C36 0 0 Cgsl 712}

12 Orthotropic — Stiffness Matrix

12.1 3 Perpendicular Planes of Symmetry
[o11] [Cii Ci2 Ciz O 0 0] [enn]
022 Cia Co Caz 0 0 0 €22
033 Ciz Caz C33 0 0 0 €33
J93 0 0 0 044 0 0 Y23
J13 0 0 0 0 C55 0 Y13
1012 ] L O 0 0 0 0 066_ L1712

Note:

» The planes are aligned along the coordinate axes.

* 9independent elastic constants

13 Transversely Isotropic — Stiffness Matrix

13.1 Axis of Rotational Symmetry (5 axis)

o11 [C11 Ci2 Ciz3 O 0 0 €11

022 Ci2 Ci1 Ci3 0 0 0 €22

033 Ci3 Ciz3 C33 0 0 0 €33

0923 0 0 0 Cs5 O 0 V23

013 0O 0 0 0 s 0 73

o] L0 0 0 0 0 i(Cu-—Ci2)l [m2l
Note:

* The axis is aligned along a coordinate direction
» 5independent elastic constants

Note, that if you rotated the material so that the axis of symmetry was not aligned along the coordinate direction,
then the stiffness matrix would not look as neat. There would not be as many zeros there. However, there would stil
be only 5 (or 9 for orthotropic) independent numbers. The other terms would be combinations of these numbers.

Also, you should note how the shear and normal components of stress/strain are decoupled. Normal stresse
produce only normal strains and vice versa. Equally, shear strain gives rise only to shear stress.
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14 Isotropic — Stiffness Matrix

14.1 Two Perpendicular Axes of Rotational Symmetry

o11 [C11 Ci2 Cho 0 0

092 Ci2 Cii Cro 0 0

o33| _ [Ci2 Ci2 Cnn 0 0

o3| |0 0 0 3(Ciu-Ci) 0

013 0 0 0 0 %(CH - 012)

| 012 L 0 0 0 0 0
Note:

» The axes can be aligned any way at all

 Just 2 independent elastic constants

15 Recap

We have discussed the following:
« Symmetry and coordinate transformations

» Detailed constitutive relations

— Stress
— Strain
— Stiffness

» Form of Stiffness tensor, and how to write it
» Transformation of stiffness tensor & Material Symmetry

— Orthotropic
— Transversely Isotropic
— Isotropic

16 Plates — Simplifications

16.1 Composite plates

Composites are often usedthin plate-like components
= Plane Stress Conditions

i.e. All stress is in plane. No out of plane stress.

« Align plane withz;—x4 plane

¢ Nonzero stresses:1, 022, 012

e Zero stressestss, 013, 0923

O O O O O

$(C11 — C12) ]

€11
€22
€33
V23
V13

LY12]
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17 Plates — Simplifications

17.1 Orthotropic

If laminate is Orthotropic (cross-ply laminate), we get

o11 Ci1 Ci2 0 €11
o2| = [Ci2 C» 0 €22
o192 0 0 Ces] M2

X3

Fibre Directions

18 Plates — Simplifications

18.1 Transversely Isotropic

If laminate is in fact transversely isotropic (unidirectional laminate), and in plane strain, we get the same expres-
sion relating stress and strain as we do for an orthotropic plate. This applies if the fibres are aligned with the plane o

the plate as shown in the fibure below.
X 3

Fibre Direction

Note that the decoupling of shear/extensional stress/strain is crucial to this step. The plane of the plate has to b
closely related to the principle directions of the laminate.
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